Effects of Categorization Training on Auditory Perception and Cortical Representations
نویسندگان
چکیده
Our ability to discriminate sounds is not uniform throughout acoustic space. One example of auditory space warping, the perceptual magnet effect, appears to arise from exposure to the phonemes of an infant’s native language. We have developed a neural model that accounts for the magnet effect in terms of neural map dynamics in auditory cortex. This model predicts that it should be possible to induce a magnet effect for nonspeech stimuli. This prediction was verified by a psychophysical experiment in which subjects underwent categorization training involving non-speech auditory stimuli that were not “categorical” prior to training. The model further predicts that the magnet effect arises because prototypical vowels have a smaller cortical representation than non-prototypical vowels. This prediction was supported by an fMRI experiment involving prototypical and non-prototypical examples of the vowel /i/. Finally, the model predicts that categorization training with non-speech stimuli should lead to a decreased cortical representation for stimuli near the center of the training category. This prediction was supported by an fMRI experiment involving categorization training with non-speech auditory stimuli.
منابع مشابه
Alfonso Nieto - Castanon
Functional magnetic resonance imaging (fMRI) was used to investigate the representation of sound categories in human auditory cortex. Experiment 1 investigated the representation of prototypical (good) and nonprototypical (bad) examples of a vowel sound. Listening to prototypical examples of a vowel resulted in less auditory cortical activation than did listening to nonprototypical examples. Ex...
متن کاملRepresentation of sound categories in auditory cortical maps.
Functional magnetic resonance imaging (fMRI) was used to investigate the representation of sound categories in human auditory cortex. Experiment 1 investigated the representation of prototypical (good) and nonprototypical (bad) examples of a vowel sound. Listening to prototypical examples of a vowel resulted in less auditory cortical activation than did listening to nonprototypical examples. Ex...
متن کاملLearning sound categories: A neural model and supporting experiments
Our ability to discriminate sounds such as vowels is not uniform throughout acoustic space. That is, our auditory perceptual spaces are warped representations of acoustic space. One example of auditory space warping, the perceptual magnet effect, arises from exposure to the phonemes of an infant’s native language. We have developed a neural model that accounts for this effect. The model is base...
متن کاملning Sound Categories: A Neural Model and Supporting Experiments
Our ability to discriminate sounds such as vowels is not uniform throughout acoustic space. That is, our auditory perceptual spaces are warped representations of acoustic space. One example of auditory space warping, the perceptual magnet effect, arises from exposure to the phonemes of an infant’s native language. We have developed a neural model that accounts for this effect. The model is base...
متن کاملCortical plasticity induced by short-term unimodal and multimodal musical training.
Learning to play a musical instrument requires complex multimodal skills involving simultaneous perception of several sensory modalities: auditory, visual, somatosensory, as well as the motor system. Therefore, musical training provides a good and adequate neuroscientific model to study multimodal brain plasticity effects in humans. Here, we investigated the impact of short-term unimodal and mu...
متن کامل